JOS

Abstract
Journal of Official Statistics, Vol.25, No.1, 2009. pp. 5562

Contents
Current Issue
Personal Reference Library (PRL)
Personal Page
Archive
Search
Home


Nonparametric Variance Estimation for Nearest Neighbor Imputation

Abstract:
Nearest neighbor imputation is a popular nonparametric hot deck imputation method used to compensate for nonresponse in sample surveys. Although the nearest neighbor imputation method has a long history of application, no asymptotically consistent nonparametric variance estimator for a survey estimator (such as the sample mean) based on data with nonrespondents imputed by nearest neighbor was available until the proposal of the adjusted jackknife variance estimator by Chen and Shao (2001). However, the adjusted jackknife method involves a somewhat artificial adjustment and is computationally complex because every jackknife pseudo-replicate has to be adjusted. We propose a consistent nonparametric variance estimator that is much easier to compute than the jackknife estimator. Some simulation results are provided to examine finite sample properties of the proposed variance estimator.

Keywords:
Nonrespondents, variance estimators, nearest neighbor, nonparametric method, consistency

Copyright Statistics Sweden 1996-2018.  Open Access
ISSN 0282-423X
Created and Maintained by OKS Group